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Energy landscapes, supergraphs, and ‘‘folding funnels’’ in spin systems
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Dynamical connectivity graphs, which describe dynamical transition rates between local energy minima of
a system, can be displayed against the background of a disconnectivity graph which represents the energy
landscape of the system. The resulting supergraph describes both dynamics and statics of the system in a
unified coarse-grained sense. We give examples of the supergraphs for several two-dimensional spin and
protein-related systems. We demonstrate that disordered ferromagnets have supergraphs akin to those of model
proteins whereas spin glasses behave like random sequences of amino acids that fold badly.
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I. INTRODUCTION

The concept of energy landscapes has played a signifi
role in elucidating the kinetics of protein folding@1,2#. An
energy landscape can be visualized by using the so-ca
disconnectivity graphs@3# that show patterns of pathway
between the local energy minima of a system. A pathw
consists of consecutive moves that are allowed kinetica
The pathways indicated in a disconnectivity graph are
lected to be those which provide a linkage at the low
energy cost among all possible trajectories between two
tinations. Thus at each predetermined value of a thresh
energy, the local energy minima are represented as div
into disconnected sets of minima which are mutually acc
sible through energy barriers. The local minima which sh
the lowest energy barrier are joined at a common node
are said to be a part of a basin corresponding to the thr
old.

The disconnectivity graphs have proved to be useful to
to elucidate the energy landscape of a model of a short p
tide @3# and of several simple molecular systems. In parti
lar, Wales, Miller, and Walsh@4# have constructed discon
nectivity graphs for the archetypal energy landscapes o
cluster of 38 Lennard-Jones atoms, the molecule ofC60, and
20 molecules of water. The work on the Lennard-Jones s
tems has been recently extended by Doyeet al. @5#. The
graph for a well folding protein is expected to have an a
pearance of a ‘‘palm tree.’’ This pattern has a we
developed basin of the ground state and it also displays
eral branches to substantially higher lying local ene
minima. Such a structure seems naturally associated with
existence of a folding funnel. The atomic level studies of
four-monomer peptide considered by Becker and Karplus@3#
yield a disconnectivity graph which suggests that this
pected behavior may be correct. Bad folders are expecte
have disconnectivity graphs similar to either a ‘‘weepi
willow’’ or a ‘‘banyan tree’’ @3,4# in which there are many
competing low lying energy minima.

We accomplish several tasks in this paper. The first
these, as addressed in Sec. II, is to construct disconnect
graphs for two lattice heteropolymers the dynamics of wh
have been already studied exactly@6#. One of them is a
PRE 601063-651X/99/60~3!/3219~8!/$15.00
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model of a protein, in the sense that it has excellent fold
properties, and we shall refer to it as a good folder. The ot
had very poor folding properties, i.e., it is a bad folder, and
thus a model of a random sequence of amino acids. We s
that, indeed, only the good folder has a proteinlike disc
nectivity graph.

In Sec. III, we study the archetypal energy landsca
corresponding to small two dimensional~2D! Ising spin sys-
tems with the ferromagnetic and spin glassy exchange c
plings. We demonstrate that disordered ferromagnets h
proteinlike disconnectivity graphs whereas spin glasses
have like bad folders. This is consistent with the concept
minimal structural frustration@7#, or maximal compatibility,
that has been introduced to explain why natural proteins h
properties which differ from those characterizing random
quences of aminoacids. It is thus expected that spin syst
which have the minimal frustration in the exchange ener
i.e., the disordered ferromagnets, would be the analog
proteins. In fact, we demonstrate that the kinetics of ‘‘fol
ing,’’ i.e., the kinetics of getting to the fully aligned groun
state of the ferromagnet by evolving from a random sta
depends on temperature,T, the way a protein does. Finding
ground state of a similarly sized spin glass takes place
nificantly longer.

The disconnectivity graphs characterize the phase sp
of a system and, therefore, they relate primarily to the eq
librium properties—the dynamics is involved only through
definition of what kinds of moves are allowed, but the
probabilities of being implemented are of no consequen
Note that even if the disconnectivity graphs indicates a f
nellike structure, the system may not get there if the tempe
ture is not right. Thus a demonstration of the existence o
funnel must involve an actual dynamics. In fact, another k
of connectivity graphs between local energy minima h
been introduced recently precisely to describe
T-dependent dynamical linkages@8# in the context of pro-
teins. We shall use the phrase ‘‘dynamical connectiv
graph’’ to distinguish this concept from that of the ‘‘discon
nectivity graph’’ of Becker and Karplus. The idea behind t
dynamical connectivity graphs is rooted in a coarse grai
description of the dynamics through mapping of the syste
trajectories to underlying effective states. In Ref.@8#, the
3219 © 1999 The American Physical Society
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3220 PRE 60PIOTR GARSTECKI, TRINH XUAN HOANG, AND MAREK CIEPLAK
effective states are the local energy minima arising as a re
of the steepest descent mapping. In Ref.@9#, the steepes
descent procedure is followed by an additional mapping t
closest maximally compact conformation. The steepest
scent mapping has been already used to describe glasse@10#
and spin glasses@11# in terms of their inherent, or hidden
valley structures.

In the dynamical connectivity graphs, the linkages are
uniform in strength. Their strengths are defined by the f
quency with which the two effective states are visited
quentially during the temporal evolution. The strengths
thus equal to the transition rates and they vary significa
from linkage to linkage and as a function ofT. An additional
characteristic used in such graphs is the fraction of ti
spent in a given effective state, without making a transiti
This can be represented by varying sizes of symbols ass
ated with the state.

In the context of these developments, it seems natura
combine the two kinds of coarse-graining graphs, equi
rium and dynamical, into single entities—the supergrap
Such supergraphs can be constructed by placing the info
tion about theT-dependent dynamical linkages on the ene
landscape represented by the disconnectivity graph. T
procedure is illustrated in Sec. IV for the case of the t
heteropolymers discussed in Sec. II. The procedure is
applied to selected spin systems. In each case, knots of
nificant dynamical connectivities within the ground state b
sin develop around a temperature at which the specific
has a maximum. These knots disintegrate on lowering thT
if the system is a spin glass or a bad folder. For good fold
and non-uniform ferromagnets the dynamical linkages wit
the ground state basin remain robust.

We hope that this kind of combined characterization,
the supergraphs, of both the dynamics and equilibrium p
ways existing in many body systems might prove reveal
also in the case of other systems, e.g., such as the mole
systems considered in Ref.@4#.

II. ENERGY LANDSCAPES IN 2D LATTICE PROTEINS

Lattice models of heteropolymers allow for an exact d
termination of the native state, i.e., of the ground state of
system, and are endowed with a simplified dynamics. Th
two features have allowed for significant advancement in
derstanding of protein folding@12#.

Here, we consider two 12-monomer sequences of mo
heteropolymers,A and B, on a two-dimensional square la
tice. These sequences have been defined in terms of Gau
contact energies~the mean equal to21 and the dispersion to
1, roughly! in Ref. @6#. They have been studied@6,8# in great
detail by the master equation and Monte Carlo approac
SequencesA andB have been established to be the good a
bad folders, respectively. Among the 15 037 different co
formations that a 12-monomer sequence can take, 495
the local energy minima for sequenceA and 496 for se-
quence B. The minima are eitherV or U shaped. The
U-shaped minima are those in which a move that does
change the energy is allowed, provided there are no mo
that lower the energy. Both kinds of minima arise as a re
of the steepest descent mapping from states generated
a Monte Carlo trajectory and both kinds are included in
disconnectivity graphs.
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Constructing a disconnectivity graph requires determi
tion of the energy barriers between each pair of the lo
energy minima. We do this through an exact enumerat
We divide the energy scale into discrete partitions of reso
tion DE ~we considerDE50.5! and ask between wha
minima there is a pathway which does not exceed the thre
old energy set at the top of the partition. These minima c
then be grouped into clusters which are disconnected f
each other. Local minima belonging to one cluster are c
nected by pathways in which the corresponding barriers
not exceed a threshold value of energy whereas the l
minima that belong to different clusters are separated by
ergy barriers which are higher than the threshold level. A
sufficiently high value of the energy threshold all minim
belong to one cluster. Enumeration of the pathways invol
storing a table of size 15 037314 because each conformatio
may have up to 14 possible moves within the dynamics c
sidered in Ref.@6#. ~16-monomer heteropolymers can also
studied in this exact way—within any resolutionDE.!

Figure 1 shows the resulting disconnectivity graphs
sequenceA. For clarity, we show only this portion of the
graph which involves the local minima with energies whi
are smaller than25 ~there are 206 such minima!. Through-
out this paper, the symbolE denotes energy measured
terms of the coupling constants in the Hamiltonian and
thus a dimensionless quantity. The native state, denote
NAT in Fig. 1, belongs to the most dominant valley. One c
see that the graph contains a remarkable palm tree bra
that provides a linkage to the native state. This branch
place within which a dynamically defined folding funnel
expected to be confined. The large size of this branch a
ciated with a big energy gap between the native state
other minima indicates large thermodynamic stability.
low temperatures, the glassy effects set in and contributi
due to non-native valleys become significant. The local m
mum denoted by TRAP in Fig. 1 has been identified in R

FIG. 1. The disconnectivity graph for the 12-monomer seque
A. The dotted area is shown again in Fig. 10 together with
dynamical connectivities.Nc is a symbolic notation for a label of an
energy minimum, based on computer generated listing.
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@6# as giving rise to the longest lasting relaxation proces
in the limit of T tending to 0.

The disconnectivity tree for sequenceB is shown in Fig.
2. Again, only the minima with energies smaller than25 are
displayed~there are 203 such minima!. In this case, there ar
several local energy minima which are bound to comp
with the native state. The corresponding branches have c
parable lengths and morphologies. The dynamics is thus
pected not to be confined merely to the native basin. Inst
the system is bound to be frustrated in terms of what bra
to choose to evolve in. At lowT’s the valley containing the
TRAP conformation is responsible for the longest relaxat
and poor folding properties.

Other examples of disconnectivity trees for protein rela
systems have been recently constructed with the use of
like models @13,14# ~in which the amino acid–amino aci
interactions are restricted only to the native contacts! and
they confirm the general pattern of differences in morph
ogy between good and bad foldability as illustrated by Fi
1 and 2.

It should be noted that there are many ways to map
the multidimensional energy landscape of proteins. In p
ticular, extensive energy landscape explorations for the
lattice heteropolymers have been done with the use of
pathway maps@15–17#. The pathway maps show the actu
microscopic paths through conformations. The paths are e
merated either exactly or statistically, and thus provide
detailed but implicit representation of the energy landsca
The resulting ‘‘flow diagrams’’ indicate patterns of allowe
kinetic connections between actual conformations, toge
with the energy barriers involved. They can also be additi
ally characterized by Monte Carlo determined probabilit
to find a given path at a temperature under study. In this w
preferable pathways and important transition states can
identified. This approach is similar in spirit to the one und
taken by Leopoldet al. @18# in which the folding funnel is
identified through determination of weights associated w
paths that lead to the native state.

FIG. 2. Similar to Fig. 1 but for sequenceB. The dotted area is
shown expanded in Fig. 11.
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The coarse grained representation of energy landscap
proteinlike systems through the disconnectivity trees is qu
distinct from that obtained through the pathway maps. T
disconnectivity graphs indicate only the one best path
each pair of the local energy minima by showing the term
nal points and the value of the energy barrier necessar
travel this path. This reduced information is precisely wh
allows one to provide an explicit and essentially automa
visualization of the energy landscapes.

TheT-dependent frequencies of passages between con
mations in the pathway maps give an account of the dyn
ics in the system. This information on the dynamics, ho
ever, does not easily fit the description provided by t
disconnectivity graphs. The steepest descent mapping to
local energy minima that we propose here is, on the ot
hand, a perfect match.

III. ENERGY LANDSCAPES IN 2D SPIN SYSTEMS

We now consider the spin systems. The Hamiltonian
given byH5(^ i j &Ji j SiSj whereSi is 61, and the exchange
couplings,Ji j , connect nearest neighbors on the square
tice. The periodic boundary conditions are adopted. Wh
studying spin systems, a frequent question to ask about
dynamics is what are the relaxation times—characteri
times needed to establish equilibrium. Here, however, we
interested in quantities which are analogous to those aske
studies of protein folding. Specifically, what is the first pa
sage timet0? The first passage time is defined as the ti
needed to come across the ground state during a Monte C
evolution that starts from a random spin configuration.
mean value oft0 in a set of trajectories~here, we consider
1000 trajectories for eachT! will be denoted bŷ t0& and the
median value bytg . tg is an analogue of the folding time,t f
of Ref. @6#. At low temperatures, the physics of relaxatio
and the physics of folding essentially agree@6#. At high tem-
peratures, however, the relaxation is fast but finding a gro
state is slow due to a large entropy. Both for heteropolym
and spin systems theT dependence of the characteristic fir
passage time is expected to beU shaped. The fastest searc
for the ground state takes place at a temperatureTmin at
which theT dependence has its minimum.

TheU-shaped dependence oft f originates in the idea of a
low T glassy phase in heteropolymers advocated by Bryn
son and Wolynes@7# within the context of the random en
ergy model. It was subsequently confirmed in numeri
simulations of lattice models@15,19,17#. This shape is, actu
ally expected for most disordered systems, including th
involving spins. However, experimentalists measuring s
systems typically would not ask about the first passage t
~at highT!.

This overall behavior is illustrated in Fig. 3 for tw
535 spin systems. The Gaussian couplings of zero m
and unit dispersion are selected for the spin glassy~SG! 2D
system. The disordered ferromagnetic system~DFM! is en-
dowed with the exchange couplings which are the abso
values of the couplings considered for SG. Figure 3 sho
that tg does depend onT in the U-shaped fashion.Tmin for
SG and DFM are comparable in values but the ‘‘folding
times for DFM are more than four times shorter than for S
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The times are defined in terms of the number of Monte Ca
steps per spin.

Figure 3 establishes some of the analogies between
heteropolymers and the spin systems. We now consider
disconnectivity graphs for selectedL3L spin systems with
L54 and 5. For both system sizes, the list of the local
ergy minima is obtained through an exact enumeration.
termination of an energy barrier between two minima
quires adopting some approximations. Suppose that the
minima differ byn spins. There are thenn! possible trajec-
tories which connect the two minima assuming that~a! no
spin is flipped more than once and~b! no other spins~or
‘‘external’’ spins! are involved in a pathway. These traject
ries can be enumerated forL54 but not for L55. In the
latter case we adopt the following additional approximatio
We first identify then(n21)(n22)(n23) list of the first
four possible steps in any trajectory together with the high
energy elevation reached during these four steps. We ch
m51500 trajectories which accomplish the smallest ele
tion. We then consider the next two-step continuations of
selected trajectories and among them(n24)(n25) continu-
ations again selectm which result in the lowest elevation
and so on until alln spins are inverted. The lowest elevatio
among the final set of them trajectories is an estimate of th
energy threshold used in the disconnectivity diagram. T
approximate method, when applied to theL54 systems,
generates results which agree with the exact enumera
Figure 4 shows that our method clearly beats the determ
tion of barriers based on totally random trajectories~but are
still restricted to overturning of then differing spins!.

Flipping of the external spins was found to give rise to
occasional reduction in the barrier height. We could n
however, come up with a systematic inclusion of such p
nomena in the calculations and the resulting disconnecti
graphs have barriers which are meant to be estimates
above. The topology of the graph is expected to depend l
on details of such approximations.

In some cases, the barrier for a direct travel from o

FIG. 3. The main figure shows theT dependence oftg—the
median time to find the ground state—for 535 DFM and SG sys-
tems. The top inset comparestg to t0 on the logarithmic time scale
The divergence of the two times at lowT indicates a substantia
spreading out of the distribution oft0 . This distribution,P(t0), is
shown in the lower inset for temperatures corresponding toTmin .
o

he
he

-
e-
-
o

.

st
se
-
e

is

n.
a-

t,
-

ty
m
le

e

minimum to another was found to be higher than when m
ing a similar passage via an intermediate local energy m
mum. An example of this situation is shown in Fig. 5. How
ever, this lack of transitivity, resulting from the approxima
nature of the calculations, does not affect the disconnecti
graph because the statesg and b of Fig. 5 are mutually
accessible at energyEbg . Then, at a higher energyEag ,
statea is thus also accessible. If, at this energy level, t
system can transfer between the statesa and g then it can
also transfer to stateb. We now present specific example
of disconnectivity graphs for several distinct spin system

Figure 6 shows the case of a 434 uniform ferromagnet
~FM!. The energy landscape of the FM is not analogous

FIG. 4. Distribution of energy barriers~highest elevation points!
across trajectories. The solid line is for the 434 DFM system. It
shows barriers for all trajectories which connect local minimuma
to another local minimumb. The lowest of them,Eab , is used as
threshold in the disconnectivity graph. The dotted line is for
535 DFM and for trajectories which go from a local energy min
mum f to the ground state. The energy barrierEf0 is obtained
through the approximate enumeration as described in the text.
other values are obtained by generating 50 000 random conne
trajectories.

FIG. 5. Examples of pathways between three local ene
minima, a, b, and g, in a 434 DFM. The corresponding spin
configurations are shown by arrows. The resulting disconnecti
graph is shown on the left.
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that of a protein because uniform exchange couplings ge
ate states with high degrees of degeneracies. These de
eracies can be split either by a randomization. Figure 6 a
shows a graph for aL54 DFM’ system in which theJi j ’s
are random numbers from the@0.9, 1.1# interval—this is the
case of a small perturbation away from the uniform FM. T
graph for DFM’ has an overall appearance like the one
FM except for the lack of a high energy linkage to a set
state which cease to be minima. Another difference is
disappearance of all remainingU-shaped minima and forma
tion of new true minima at somewhat spread out energies
the uniformL54 ferromagnet, there are fiveV-shaped en-
ergy minima: one is the ground state and the other f
higher energy states are degenerate. In addition, there
346 states which are theU-shaped energy minima. An ex
ample of what happens in aU-shaped minimum is shown in
Fig. 7. Here, the system can move between the three-
four-spin domains without a change in the energy. The fo

FIG. 6. The disconnectivity graphs for the FM and DFM
434 systems, as defined in the text. The arrows in the boxes s
examples of the corresponding spin configurations. The num
indicate the degree of degeneracy and the numbers in bracke
dicate number of distinct geometries for the inverted domains
take at the energy considered. For a uniform antiferromagnetic
tem the disconnectivity graph looks qualitatively similar to the o
characterizing FM but the ground state is the onlyV-shaped local
energy minimum of the system.

FIG. 7. Examples of spin configurations in the 434 FM system.
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spin domain forms aU-shaped minimum but the three-sp
state is not a minimum because there is a move to a lo
energy state. Only the four-spin domain states would
shown in the disconnectivity graph.

Figure 8 shows the disconnectivity graphs for twoL54
spin glassy systems. The right-hand panel shows the cas
Ji j 561. The left-hand panel shows a spin glass~SG’! with
the exchange couplings which are randomly positive
negative and with their magnitudes coming from the inter
@0.9, 1.1#—this is the random sign counterpart of the DFM
system. In both spin glassy systems of Fig. 8 the alloca
of signs to the couplings is identical. In the61 case, all
minima, including the degenerate ground state, areU shaped.
The SG’ system, on the other hand, has a graph with
overall structure akin to that corresponding to the61 system
with one important difference: the ground state is not deg
erate and thus the ground state basin splits into several c
peting valleys.

The differences between the good and bad spin fold

w
rs
in-
o
s-

FIG. 8. The disconnectivity graphs for the 434 spin glassy
systems: with the Gaussian~SG’! and with the 61 couplings
~SG 6!. The numbers correspond to the number ofU-shaped
minima at an energy shown in the graph.

FIG. 9. The disconnectivity graphs for the 534 DFM and SG
systems~the top panels! and the corresponding representation of t
energy landscapes~the bottom panels!.
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amplify as the system size is increased. As an illustrat
Fig. 9 shows the disconnectivity graphs for the 535 DFM
and SG—with the Gaussian couplings. The DFM syste
has a very stable and well developed valley correspondin
the ground state whereas the SG system has many comp
valleys. Thus indeed, DFM is a spin analogue of a prot
whereas SG is an analogue of a random sequence of
noacids.

The disconnectivity graphs can be represented in a f
that gives a better illusion of an actual landscape, as sh
in the bottom panels of Fig. 9. The lines shown there conn
the local energy minima to their energy barriers and then
the next minimum, and so on, forming an envelope of
original graph. This form is less cluttered and will be used
Sec. V. This envelope representation shows merely
smallest scale variations in energy and omits passages
large barriers.

IV. DYNAMICAL CONNECTIVITY GRAPHS
FOR LATTICE HETEROPOLYMERS

We now construct the supergraphs for the lattice h
eropolymers discussed in Sec. II. The strengths of the
namical linkages have been already determined in Ref.@8# at
several temperatures. Here, however, we plot the linkage
the graphs that represent the energy landscapes, i.e., w
arrange the labels associated with the local energy mini
We discuss only the case ofT5Tmin which is equal to 1.0 for
both sequencesA andB.

Figures 10 and 11 shows the supergraphs for sequencA
andB, respectively. The sizes of the circles are proportio
to an occupancy of the minimum during the folding tim
Similarly, the thicknesses of the lines connecting the circ
are proportional to the connectivity~the linking frequency!
between them. For clarity, we do not show connectivit
which account for less than 1% of all combined dynami
connectivities. The disconnectivity graphs themselves

FIG. 10. Dynamical connectivity graph for sequenceA at T
51.0 plotted against the background of the disconnectivity gra
The dynamical linkages are restricted to the dotted region of Fi
and only this portion of the disconnectivity graph is shown.
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drawn in dotted lines. All relevant dynamics is confined
these portion of the of the disconnectivity graphs which w
marked, in Figs. 1 and 2, by the dotted lines and are n
magnified in Figs. 10 and 11.

An inspection of the supergraphs clearly shows diff
ences between the two sequences. SequenceA has many in-
tervalley linkages but the linkages to the native basin, a
the occupancies of conformations within that basin, are s
stantial. These are manifestations of a fast folding dynam
For sequenceB, on the other hand, the linkages tend
wither uncooperatively in multiple valleys. In addition, th
combined occupancies away from the native valley outwe
the dynamical effects within the valley. On lowering th
temperature, linkages in various valleys become disc
nected and tend to avoid the native valley more and more
discussed in Ref.@8#.

V. DYNAMICAL CONNECTIVITY GRAPHS
FOR SPIN SYSTEMS

We now generate dynamical linkages for two spin s
tems,L55 DFM and SG of Sec. III, and place them on th
plots of the energy landscape. The ‘‘envelope’’ form of t
representation of the landscape is chosen here, mostly
aesthetic reasons. The connectivities are determined base
200 Monte Carlo trajectories of a fixed length of 5000 ste
per spin. The duration of these trajectories exceeds the f
ing time many times, at the temperatures studied, and
the connectivities displayed refer to the essentially equi
rium situations~the equilibrium dynamics for heteropoly
mers A and B is illustrated in Ref.@8#!. The connectivity
rates were updated any time~in terms of single spin event
and not in terms of steps per spin! there is a transition from
a local energy minimum to a local energy minimum, after t
steepest descent mapping. Again, the 1% display cutoff
been implemented when making the figure.

The main parts of Figs. 12 and 13 show the supergra
obtained at a temperature which corresponds to theT loca-
tion of the peak in specific heat. These temperatures, 1.8
DFM and 1.4 for SG, are also close toTmin . The insets show

h.
1

FIG. 11. Similar to Fig. 10 but for sequenceB.
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the dynamically relevant parts of the energy landscape
lower temperatures. For the DFM, the dynamics becom
increasingly confined to the ground state basin when the t
perature is reduced. On the other hand, for the SG, the
namics in the ground state basin becomes less and less
evant, with a higher local energy minimum absorbing t
majority of moves. This is indeed what happens with b
folding heteropolymers.

If we restrict counting of the transition rates only to th
folding stage, i.e., until the ground state is encountered,
qualitative look of the supergraph forT close toTmin is as in
the equilibrium case. The states involved are mostly
same but there is, by definition, only one link to the grou
state per trajectory.

The dynamical connectivity graphs in 3D 10310310
DFM systems are qualitatively similar to the 2D graphs b
the underlying disconnectivity graphs are harder to disp
due to a substantially larger number of the energy minim

In this paper we have pointed out the existence of m
analogies between protein folding and dynamics of spin s
tems. These analogies have restrictions. For instance,
simple Ising spin systems in 3D have continuous phase t
sitions, in the thermodynamic limit, and not the first-orde
like that are expected to characterize large proteins@20#. This
difference, however, is not crucial in the case of small s
tems. More accurate spin analogs of proteins, with the
order transition, can be constructed but the object of
paper was to discuss the basic types of spin systems.

FIG. 12. The dynamical-equilibrium supergraph for the 535
DFM system atT51.8. The inset shows the portion that is releva
at T50.9.
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On the other hand, it should be pointed out that the
analogies are also more extensive. Consider, for instance
Thirumalai @21# criterion for good foldability of proteins.
The criterion considers two quantities: the specific heat
the structural susceptibility of a heteropolymer. The latter
a measure of fluctuations in the structural deviations aw
from the native state. Both quantities have peaks at cer
temperatures. The criterion specifies that if the two tempe
tures coincide a heteropolymer is a good folder. This is qu
similar to what happens in uniform and disordered 3D fer
magnets: the peaks~singularities! in magnetic susceptibility
and specific heat are located at the same critical tempera
On the other hand, in spin glasses, the broad maximum in
specific heat is located at a temperature which is subs
tially above the freezing temperature associated with
cusp in the susceptibility. Also in this sense then, s
glasses behave like bad folders. The coarse-graining su
graphs that analyze dynamics in the context of the syste
energy landscape may become a valuable tool to unders
complex behavior of many body systems.
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FIG. 13. The supergraph for the 535 SG system atT51.4. The
insets show the portions which are relevant at two lower temp
tures. The ground state configuration is shown at the top.
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