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Energy landscapes, supergraphs, and “folding funnels” in spin systems
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Dynamical connectivity graphs, which describe dynamical transition rates between local energy minima of
a system, can be displayed against the background of a disconnectivity graph which represents the energy
landscape of the system. The resulting supergraph describes both dynamics and statics of the system in a
unified coarse-grained sense. We give examples of the supergraphs for several two-dimensional spin and
protein-related systems. We demonstrate that disordered ferromagnets have supergraphs akin to those of model
proteins whereas spin glasses behave like random sequences of amino acids that fold badly.
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[. INTRODUCTION model of a protein, in the sense that it has excellent folding
properties, and we shall refer to it as a good folder. The other
The concept of energy landscapes has played a significahtad very poor folding properties, i.e., it is a bad folder, and is
role in elucidating the kinetics of protein foldird.,2]. An  thus a model of a random sequence of amino acids. We show
energy landscape can be visualized by using the so-calletthat, indeed, only the good folder has a proteinlike discon-
disconnectivity graph$3] that show patterns of pathways nectivity graph.
between the local energy minima of a system. A pathway In Sec. Ill, we study the archetypal energy landscapes
consists of consecutive moves that are allowed kineticallycorresponding to small two dimensior{@D) Ising spin sys-
The pathways indicated in a disconnectivity graph are setems with the ferromagnetic and spin glassy exchange cou-
lected to be those which provide a linkage at the lowesplings. We demonstrate that disordered ferromagnets have
energy cost among all possible trajectories between two degroteinlike disconnectivity graphs whereas spin glasses be-
tinations. Thus at each predetermined value of a thresholtlave like bad folders. This is consistent with the concept of
energy, the local energy minima are represented as divideghinimal structural frustratiofi7], or maximal compatibility,
into disconnected sets of minima which are mutually accesthat has been introduced to explain why natural proteins have
sible through energy barriers. The local minima which shareroperties which differ from those characterizing random se-
the lowest energy barrier are joined at a common node anduences of aminoacids. It is thus expected that spin systems
are said to be a part of a basin corresponding to the threslvhich have the minimal frustration in the exchange energy,
old. i.e., the disordered ferromagnets, would be the analogs of
The disconnectivity graphs have proved to be useful toolgroteins. In fact, we demonstrate that the kinetics of “fold-
to elucidate the energy landscape of a model of a short pefrg,” i.e., the kinetics of getting to the fully aligned ground
tide [3] and of several simple molecular systems. In particustate of the ferromagnet by evolving from a random state,
lar, Wales, Miller, and Walsi4] have constructed discon- depends on temperatufg,the way a protein does. Finding a
nectivity graphs for the archetypal energy landscapes of ground state of a similarly sized spin glass takes place sig-
cluster of 38 Lennard-Jones atoms, the molecul€gf and nificantly longer.
20 molecules of water. The work on the Lennard-Jones sys- The disconnectivity graphs characterize the phase space
tems has been recently extended by Da&fel. [5]. The of a system and, therefore, they relate primarily to the equi-
graph for a well folding protein is expected to have an ap-ibrium properties—the dynamics is involved only through a
pearance of a “palm tree.” This pattern has a well- definition of what kinds of moves are allowed, but their
developed basin of the ground state and it also displays seyprobabilities of being implemented are of no consequence.
eral branches to substantially higher lying local energyNote that even if the disconnectivity graphs indicates a fun-
minima. Such a structure seems naturally associated with theellike structure, the system may not get there if the tempera-
existence of a folding funnel. The atomic level studies of theture is not right. Thus a demonstration of the existence of a
four-monomer peptide considered by Becker and Karf8lis  funnel must involve an actual dynamics. In fact, another kind
yield a disconnectivity graph which suggests that this ex-of connectivity graphs between local energy minima has
pected behavior may be correct. Bad folders are expected teeen introduced recently precisely to describe the
have disconnectivity graphs similar to either a “weeping T-dependent dynamical linkag¢8] in the context of pro-
willow” or a “banyan tree” [3,4] in which there are many teins. We shall use the phrase “dynamical connectivity
competing low lying energy minima. graph” to distinguish this concept from that of the “discon-
We accomplish several tasks in this paper. The first ohectivity graph” of Becker and Karplus. The idea behind the
these, as addressed in Sec. Il, is to construct disconnectivitgynamical connectivity graphs is rooted in a coarse grained
graphs for two lattice heteropolymers the dynamics of whichdescription of the dynamics through mapping of the system’s
have been already studied exacf]. One of them is a trajectories to underlying effective states. In Rgf], the
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effective states are the local energy minima arising as a resul A
of the steepest descent mapping. In Hé&f, the steepest -2 -
descent procedure is followed by an additional mapping to a
closest maximally compact conformation. The steepest de-
scent mapping has been already used to describe gld€§es
and spin glassegll] in terms of their inherent, or hidden,
valley structures.

In the dynamical connectivity graphs, the linkages are not
uniform in strength. Their strengths are defined by the fre- -6
qguency with which the two effective states are visited se-
quentially during the temporal evolution. The strengths are
thus equal to the transition rates and they vary significantly Y
from linkage to linkage and as a function Bf An additional
characteristic used in such graphs is the fraction of time
spent in a given effective state, without making a transition.
This can be represented by varying sizes of symbols associ-
ated with the state.

In the context of these developments, it seems natural to NAT
combine the two kinds of coarse-graining graphs, equilib- -1z = B e :
rium and dynamical, into single entities—the supergraphs. - N,

Such supergraphs can be constructed by placing the informa-

tion about theT-dependent dynamical linkages on the energy  FIG. 1. The disconnectivity graph for the 12-monomer sequence
landscape represented by the disconnectivity graph. Thi& The dotted area is shown again in Fig. 10 together with the
procedure is illustrated in Sec. IV for the case of the tWOdynamlca_I c_onnectlvmeﬂxlC is a symbolic notation fgrglabel of an
heteropolymers discussed in Sec. II. The procedure is thef"€79Y minimum, based on computer generated listing.

applied to selected spin systems. In each case, knots of sig-
nificant dynamical connectivities within the ground state ba-t
sin develop around a temperature at which the specific he
has a maximum. These knots disintegrate on loweringrthe
if the system is a spin glass or a bad folder. For good folder

and non-uniform ferromagnets the dynamical linkages Withinminima there is a pathway which does not exceed the thresh-

thev\g/;rorl:nd S:ﬁtej; ?ha_\sull_rzma;m rO%.JSt'd h terizati b old energy set at the top of the partition. These minima can
€ hope that Inis kind ot combined charactérzation, yy,qp e grouped into clusters which are disconnected from

the supergraphs, of both the dynamics and equilibrium pat each other. Local minima belonging to one cluster are con-

ways existing in many body systems might prove reve""“n%ected by pathways in which the corresponding barriers do
also in the case of ot'her systems, €.g., such as the mOIeCUIr%t exceed a threshold value of energy whereas the local
systems considered in R¢#]. minima that belong to different clusters are separated by en-
ergy barriers which are higher than the threshold level. At a
sufficiently high value of the energy threshold all minima

Lattice models of heteropolymers allow for an exact de-belong to one cluster. Enumeration of the pathways involves
termination of the native state, i.e., of the ground state of thatoring a table of size 15 03714 because each conformation
system, and are endowed with a simplified dynamics. Thesmay have up to 14 possible moves within the dynamics con-
two features have allowed for significant advancement in unsidered in Ref{6]. (16-monomer heteropolymers can also be
derstanding of protein foldinfl2]. studied in this exact way—within any resolutidvE.)

Here, we consider two 12-monomer sequences of model Figure 1 shows the resulting disconnectivity graphs for
heteropolymersA and B, on a two-dimensional square lat- sequenceA. For clarity, we show only this portion of the
tice. These sequences have been defined in terms of Gauss@naph which involves the local minima with energies which
contact energieghe mean equal te-1 and the dispersion to are smaller than-5 (there are 206 such minimaThrough-

1, roughly in Ref.[6]. They have been studi¢@,8] in great  out this paper, the symbdt denotes energy measured in
detail by the master equation and Monte Carlo approacheserms of the coupling constants in the Hamiltonian and is
Sequenceé andB have been established to be the good andhus a dimensionless quantity. The native state, denoted as
bad folders, respectively. Among the 15 037 different con-NAT in Fig. 1, belongs to the most dominant valley. One can
formations that a 12-monomer sequence can take, 495 asee that the graph contains a remarkable palm tree branch
the local energy minima for sequenéeand 496 for se- that provides a linkage to the native state. This branch is a
guenceB. The minima are eithe or U shaped. The place within which a dynamically defined folding funnel is
U-shaped minima are those in which a move that does natxpected to be confined. The large size of this branch asso-
change the energy is allowed, provided there are no movesated with a big energy gap between the native state and
that lower the energy. Both kinds of minima arise as a resulother minima indicates large thermodynamic stability. At
of the steepest descent mapping from states generated alologv temperatures, the glassy effects set in and contributions
a Monte Carlo trajectory and both kinds are included in thedue to non-native valleys become significant. The local mini-
disconnectivity graphs. mum denoted by TRAP in Fig. 1 has been identified in Ref.

-10

Constructing a disconnectivity graph requires determina-
ion of the energy barriers between each pair of the local
Zétnergy minima. We do this through an exact enumeration.
We divide the energy scale into discrete partitions of resolu-
Yon AE (we considerAE=0.5 and ask between what

Il. ENERGY LANDSCAPES IN 2D LATTICE PROTEINS



PRE 60 ENERGY LANDSCAPES, SUPERGRAPHS, AND . .. 3221

B The coarse grained representation of energy landscapes in
-2 proteinlike systems through the disconnectivity trees is quite
distinct from that obtained through the pathway maps. The
disconnectivity graphs indicate only the one best path for
each pair of the local energy minima by showing the termi-
nal points and the value of the energy barrier necessary to
travel this path. This reduced information is precisely what
allows one to provide an explicit and essentially automatic
visualization of the energy landscapes.

The T-dependent frequencies of passages between confor-
mations in the pathway maps give an account of the dynam-
ics in the system. This information on the dynamics, how-
ever, does not easily fit the description provided by the
disconnectivity graphs. The steepest descent mapping to the
-10 |- local energy minima that we propose here is, on the other
hand, a perfect match.

—-12 SO :
N Ill. ENERGY LANDSCAPES IN 2D SPIN SYSTEMS

- = c

We now consider the spin systems. The Hamiltonian is
given byH=%;,J;;SS; whereS; is 1, and the exchange
couplings,Jj;, connect nearest neighbors on the square lat-
[6] as giving rise to the longest lasting relaxation processe8ce. The periodic boundary conditions are adopted. When
in the limit of T tending to 0. studying spin systems, a frequent question to ask about the

The disconnectivity tree for sequenBds shown in Fig. dynamics is what are the relaxation times—characteristic
2. Again, only the minima with energies smaller thas are  times needed to establish equilibrium. Here, however, we are
displayed(there are 203 such miniman this case, there are interested in quantities which are analogous to those asked in
several local energy minima which are bound to competétudies of protein folding. Specifically, what is the first pas-
with the native state. The corresponding branches have congage timet,? The first passage time is defined as the time
parable lengths and morphologies. The dynamics is thus exteeded to come across the ground state during a Monte Carlo
pected not to be confined merely to the native basin. Instea@volution that starts from a random spin configuration. A
the system is bound to be frustrated in terms of what branchean value ot, in a set of trajectorieshere, we consider
to choose to evolve in. At loW’s the valley containing the 1000 trajectories for each) will be denoted by(t,) and the
TRAP conformation is responsible for the longest relaxationmedian value by . t, is an analogue of the folding timé;
and poor folding properties. of Ref. [6]. At low temperatures, the physics of relaxation

Other examples of disconnectivity trees for protein relatecand the physics of folding essentially agfé. At high tem-
systems have been recently constructed with the use of Ggeratures, however, the relaxation is fast but finding a ground
like models[13,14 (in which the amino acid—amino acid State is slow due to a large entropy. Both for heteropolymers
interactions are restricted only to the native contaeisd and spin systems the dependence of the characteristic first
they confirm the general pattern of differences in morphol{passage time is expected to Ueshaped. The fastest search
ogy between good and bad foldability as illustrated by Figsfor the ground state takes place at a temperafyyg at
1 and 2. which theT dependence has its minimum.

It should be noted that there are many ways to map out TheU-shaped dependence teforiginates in the idea of a
the multidimensional energy landscape of proteins. In parlow T glassy phase in heteropolymers advocated by Bryngel-
ticular, extensive energy landscape explorations for the HBon and Wolyne$7] within the context of the random en-
lattice heteropolymers have been done with the use of thergy model. It was subsequently confirmed in numerical
pathway map$15—17. The pathway maps show the actual simulations of lattice modelgl5,19,17. This shape is, actu-
microscopic paths through conformations. The paths are en@lly expected for most disordered systems, including those
merated either exactly or statistically, and thus provide dnvolving spins. However, experimentalists measuring spin
detailed but implicit representation of the energy landscapesystems typically would not ask about the first passage time
The resulting “flow diagrams” indicate patterns of allowed (at highT).
kinetic connections between actual conformations, together This overall behavior is illustrated in Fig. 3 for two
with the energy barriers involved. They can also be addition5X5 spin systems. The Gaussian couplings of zero mean
ally characterized by Monte Carlo determined probabilitiesand unit dispersion are selected for the spin gldSsy 2D
to find a given path at a temperature under study. In this waysystem. The disordered ferromagnetic syst®fM) is en-
preferable pathways and important transition states can bdowed with the exchange couplings which are the absolute
identified. This approach is similar in spirit to the one under-values of the couplings considered for SG. Figure 3 shows
taken by Leopoldet al. [18] in which the folding funnel is thatty does depend oif in the U-shaped fashionT ;, for
identified through determination of weights associated withSG and DFM are comparable in values but the “folding”
paths that lead to the native state. times for DFM are more than four times shorter than for SG.

FIG. 2. Similar to Fig. 1 but for sequen& The dotted area is
shown expanded in Fig. 11.
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FIG. 3. The main figure shows the dependence of;—the R o _ _
median time to find the ground state—fox% DFM and SG sys- FIG. 4. Distribution of energy barriefbighest elevation points

tems. The top inset Compar%sto tO on the |Ogarithmic time scale. across trajectories. The solid line is for thx4 DFM System. It

The divergence of the two times at loWindicates a substantial Shows barriers for all trajectories which connect local minimam

spreading out of the distribution . This distribution,P(t,), is  to another local minimung. The lowest of themE, 5, is used as

Shown in the |0wer inset for temperatures Correspondin'gn""g_ threshold in the d|SCOnneCt|V|ty graph. The dotted line is for a
5X5 DFM and for trajectories which go from a local energy mini-

The times are defined in terms of the number of Monte Carld"U™ ¢ 1o the ground state. The energy barrigg, is obtained

steps per spin through the approximate enumeration as described in the text. The

Figure 3 establishes some of the analogies between ”fé;}gf;tﬁgses are obtained by generating 50 000 random connecting

heteropolymers and the spin systems. We now consider the
disconnectivity graphs for selectéd<L spin systems with minimum to another was found to be higher than when mak-
L=4 and 5. For both system sizes, the list of the local en-

LT X . ing a similar passage via an intermediate local energy mini-
ergy minima is obtained through an exact enumeration. De

S f barrier b o mum. An example of this situation is shown in Fig. 5. How-
termination of an energy barrier between two minima re-g,qr this lack of transitivity, resulting from the approximate

qu_ir_es adppting some approximations. Suppo_se that_the Wature of the calculations, does not affect the disconnectivity
minima differ by n spins. There are then possible trajec-

. . - ) raph because the statesand B8 of Fig. 5 are mutuall
tories which connect the two minima assuming ttetno grap 93 A g y

U , accessible at energl;,. Then, at a higher energl,,, ,
‘s‘,pln IS ﬂ',f)pe.d more'than once ari) no other splns(pr statea is thus also accessible. If, at this energy level, the
external” sping) are involved in a pathway. These trajecto- system can transfer between the stateand y then it can
ries can be enumerated fir=4 but not forL=5. In the

I d he followi dditional .~ also transfer to stat8. \We now present specific examples
atter case we adopt the following additional approximation. disconnectivity graphs for several distinct spin systems.
We first identify then(n—1)(n—2)(n—3) list of the first

. i ' ! ; Figure 6 shows the case of ax4t uniform ferromagnet
four possible steps in any trajectory together with the h|ghesEFM)_ The energy landscape of the FM is not analogous to
energy elevation reached during these four steps. We choose

m= 1500 trajectories which accomplish the smallest eleva- DFM 4x4
tion. We then consider the next two-step continuations of the
selected trajectories and among thén—4)(n—5) continu- _12 o~
ations again selean which result in the lowest elevation, ] E /:’\-an\‘E\\\
and so on until alh spins are inverted. The lowest elevation Tl B \\
among the final set of th trajectories is an estimate of the \ /
energy threshold used in the disconnectivity diagram. This
approximate method, when applied to the=4 systems, E \
generates results which agree with the exact enumeration. el % \\ / B
Figure 4 shows that our method clearly beats the determina- \/E,
tion of barriers based on totally random trajectorilest are Y
still restricted to overturning of the differing spins. 207
Flipping of the external spins was found to give rise to an
occasional reduction in the barrier height. We could not, v
however, come up with a systematic inclusion of such phe- Nc
nomena in the calculations and the resulting disconnectivity
graphs have barriers which are meant to be estimates from FIG. 5. Examples of pathways between three local energy
above. The topology of the graph is expected to depend littlgninima, «, B, and y, in a 4x4 DFM. The corresponding spin
on details of such approximations. configurations are shown by arrows. The resulting disconnectivity
In some cases, the barrier for a direct travel from onegraph is shown on the left.

-16
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FIG. 6. The disconnectivity graphs for the FM and DFM’
4X 4 systems, as defined in the text. The arrows in the boxes show FIG. 8. The disconnectivity graphs for thex4t spin glassy
examples of the corresponding spin configurations. The numbersystems: with the Gaussia(6G’) and with the =1 couplings
indicate the degree of degeneracy and the numbers in brackets i(6G +). The numbers correspond to the number Wihaped
dicate number of distinct geometries for the inverted domains taninima at an energy shown in the graph.
take at the energy considered. For a uniform antiferromagnetic sys-
tem the disconnectivity graph looks qualitatively similar to the onespin domain forms 4J-shaped minimum but the three-spin
characteri_zi_ng FM but the ground state is the odhghaped local  state is not a minimum because there is a move to a lower
energy minimum of the system. energy state. Only the four-spin domain states would be

that of tein b i h i shown in the disconnectivity graph.
at of a protéin because uniiorm exchange couplings gener- Figure 8 shows the disconnectivity graphs for twe 4

ate states with hig_h d_egrees of degengrac_ies. These deg in glassy systems. The right-hand panel shows the case of
eracies can be split either by a randomization. Figure 6 alsgij — = 1. The left-hand panel shows a spin glaS&") with

shows 3 graph fcl;r a:f4 D![:I\g’gsylstemtm WT'C?h.the.giit}S] the exchange couplings which are randomly positive or
are rar} om nlljlm etrs bfotfn 6.9, f']] mt(:]rva—_f IS IISM ?rh negative and with their magnitudes coming from the interval
case ol a small perturbation away from the unitorm = 0.9, 1.J—this is the random sign counterpart of the DFM’

graph for DFM’ has an overall appearance like the one fos stem. In both spin glassy systems of Fig. 8 the allocation
FM except for the lack of a high energy linkage to a set ofo¥ signs to the C(F))uplgi]ngs %’S i)(/jentical. In %’tél case, all

state which cease to be minima. Another difference is th(?ninima including the degenerate ground state Lhshaped
d_isappearance of ?I! remainitgshaped minima and forma- The Sé’ system, on the other hand, has a Egraph with an
t'r?n of _r];lew tLrLie4mf|n|ma at somer\:vhat Spri%iow en((ajrg|es. 'Bverall structure akin to that corresponding to th# system

the uniform - e_rronr":agnet, tdere are i d_Sh apeh en]: with one important difference: the ground state is not degen-
ergy minima: one is the ground state and the other foug aiq gng thus the ground state basin splits into several com-
higher energy states are degenerate. In addition, there af)%ting valleys

346 states which are tH.d'Shaped energy minima. An ex- The differences between the good and bad spin folders
ample of what happens inld-shaped minimum is shown in
Fig. 7. Here, the system can move between the three- and

four-spin domains without a change in the energy. The four- DFM SG 5x5
201
FM 4x4
16| B E\z Es __Es 10
\ //
\ /
\ /
\ /
\ /
\ /
\ /
E N\
-20 A
YUVY | |YVVVY | | YVYVVY | |YVVV | | VYVVY
VAAV | |VAAV || VAVV| |VAVY | | AAVY
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vvvv | |vvvy | | vvvv | | VVvY | | VVVY ]
s#1 s#2 s#3 si#4 s#5 No
Nc¢ FIG. 9. The disconnectivity graphs for the<3 DFM and SG

systemgthe top panelsand the corresponding representation of the

FIG. 7. Examples of spin configurations in th&x4 FM system.  energy landscapgshe bottom pane)s
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FIG. 10. Dynamical connectivity graph for sequengeat T FIG. 11. Similar to Fig. 10 but for sequenge

=1.0 plotted against the background of the disconnectivity graph.
The dynamical linkages are restricted to the dotted region of Fig. drawn in dotted lines. All relevant dynamics is confined to
and only this portion of the disconnectivity graph is shown. these portion of the of the disconnectivity graphs which were
marked, in Figs. 1 and 2, by the dotted lines and are now
amplify as the system size is increased. As an illustrationmagnified in Figs. 10 and 11.
Fig. 9 shows the disconnectivity graphs for th&s DFM An inspection of the supergraphs clearly shows differ-
and SG—with the Gaussian couplings. The DFM system&nces between the two sequences. SequAris many in-
has a very stable and well developed valley corresponding ttervalley linkages but the linkages to the native basin, and
the ground state whereas the SG system has many competitige occupancies of conformations within that basin, are sub-
valleys. Thus indeed, DFM is a spin analogue of a proteirstantial. These are manifestations of a fast folding dynamics.
whereas SG is an analogue of a random sequence of anfror sequenceB, on the other hand, the linkages tend to
noacids. wither uncooperatively in multiple valleys. In addition, the
The disconnectivity graphs can be represented in a forrscombined occupancies away from the native valley outweigh
that gives a better illusion of an actual landscape, as showthe dynamical effects within the valley. On lowering the
in the bottom panels of Fig. 9. The lines shown there connedemperature, linkages in various valleys become discon-
the local energy minima to their energy barriers and then tmected and tend to avoid the native valley more and more, as
the next minimum, and so on, forming an envelope of thediscussed in Ref8].
original graph. This form is less cluttered and will be used in
Sec. V. This envelope representation shows merely the V. DYNAMICAL CONNECTIVITY GRAPHS
smallest scale variations in energy and omits passages with FOR SPIN SYSTEMS
large barriers.
We now generate dynamical linkages for two spin sys-
V. DYNAMICAL CONNECTIVITY GRAPHS tems,L=5 DFM and SG of Sec. Ill, f\nd pIace”them on the
FOR LATTICE HETEROPOLYMERS plots of the_energy landscape. The envelope” form of the
representation of the landscape is chosen here, mostly for
We now construct the supergraphs for the lattice hetaesthetic reasons. The connectivities are determined based on
eropolymers discussed in Sec. Il. The strengths of the dy200 Monte Carlo trajectories of a fixed length of 5000 steps
namical linkages have been already determined in[B¢ft  per spin. The duration of these trajectories exceeds the fold-
several temperatures. Here, however, we plot the linkages dng time many times, at the temperatures studied, and thus
the graphs that represent the energy landscapes, i.e., we tee connectivities displayed refer to the essentially equilib-
arrange the labels associated with the local energy minimaium situations(the equilibrium dynamics for heteropoly-
We discuss only the case o= T,,;, which is equal to 1.0 for mers A and B is illustrated in Ref.[8]). The connectivity
both sequenceA andB. rates were updated any tinfm terms of single spin events
Figures 10 and 11 shows the supergraphs for sequéncesand not in terms of steps per spithere is a transition from
andB, respectively. The sizes of the circles are proportionak local energy minimum to a local energy minimum, after the
to an occupancy of the minimum during the folding time. steepest descent mapping. Again, the 1% display cutoff has
Similarly, the thicknesses of the lines connecting the circledbeen implemented when making the figure.
are proportional to the connectivityhe linking frequency The main parts of Figs. 12 and 13 show the supergraphs
between them. For clarity, we do not show connectivitiesobtained at a temperature which corresponds toTtheca-
which account for less than 1% of all combined dynamicaltion of the peak in specific heat. These temperatures, 1.8 for
connectivities. The disconnectivity graphs themselves ar®FM and 1.4 for SG, are also closeTgq,,,. The insets show
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DFM 5x5 20

T=0.4

FIG. 12. The dynamical-equilibrium supergraph for th&% FIG. 13. The supergraph for the® SG system al=1.4. The

DFM system aff = 1.8. The inset shows the portion that is relevantinsets show the portions which are relevant at two lower tempera-
atT=09 tures. The ground state configuration is shown at the top.

the dynamically relevant parts of the energy landscape at o, the other hand, it should be pointed out that these

lower temperatures. For the DFM, the dynamics becomeg o ngies are also more extensive. Consider, for instance, the
increasingly confined to the ground state basin when the teMrpir malai [21] criterion for good foldability of proteins.
perature Is reduced. On the other hand, for the SG, the dyI'he criterion considers two quantities: the specific heat and
namics in the ground state basin becomes less and less gy gy ctyral susceptibility of a heteropolymer. The latter is

evant, with a higher local energy minimum absorbing thea measure of fluctuations in the structural deviations away

majority of moves. This is indeed what happens with badyn e native state. Both quantities have peaks at certain
folding heter(_)polymer_s. . temperatures. The criterion specifies that if the two tempera-
lf. we restrict counting of the transition rates only to the tures coincide a heteropolymer is a good folder. This is quite
folding stage, i.e., until the ground state is encountered, thg;ijar o what happens in uniform and disordered 3D ferro-
qualitative look of the supergraph farclose toTn IS @S In- agnets: the peakisingularities in magnetic susceptibility
the equilibrium case. Th_e_ states 'nVOIVed are mostly the,q specific heat are located at the same critical temperature.
same but there is, by definition, only one link to the groundg, ihe other hand, in spin glasses, the broad maximum in the
state per trajeqtory. . , specific heat is located at a temperature which is substan-
The dynamical connectivity graphs in 3D 2A0X10 )1y ahove the freezing temperature associated with the

DFM systems are qualitatively similar to the 2D graphs butCusp in the susceptibility. Also in this sense then, spin

the underlying disconnectivity graphs are harder to display555es hehave like bad folders. The coarse-graining super-
due to a substantially larger number of the energy minima. raphs that analyze dynamics in the context of the system’s

In this paper we have pointed out the existence of many,,qarqy Jandscape may become a valuable tool to understand
analogies between protein folding and dynamics of spin SYSeomplex behavior of many body systems.
tems. These analogies have restrictions. For instance, the

simple Ising spin systems in 3D have continuous phase tran-
sitions, in the thermodynamic limit, and not the first-order-
like that are expected to characterize large protg26% This
difference, however, is not crucial in the case of small sys-
tems. More accurate spin analogs of proteins, with the first This work was supported by KBNGrants No. 2P03B-
order transition, can be constructed but the object of thi©25-13 and 2P03B-125-16Fruitful discussions with Jay-
paper was to discuss the basic types of spin systems. anth R. Banavar are appreciated.
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